
Exercice 1 (eml 2025)

Partie A :

1)a)Récurrence.
Soit P�n� la proposition : 8 un % 0 9.

P�0� est vraie car u0 � 1 % 0.

Soit n " N. Supposons P�n� vraie. Montrons que P�n � 1� est vraie.

Par HR, un % 0. De plus, e
1©un % 0. Par produit, un�1 % 0.

On conclut que P�n� est vraie pour tout n " N.

b)¾n " N, un�1 � un � un �e1©un
� 1�.

un % 0 donc 1©un % 0 et e
1©un % 1. D’où e

1©un
� 1 % 0.

Par produit, un�1�un % 0. Donc la suite �un�n"N est strictement croissante.

c)�un�n"N étant croissante, elle admet une limite. Cette limite est soit un
nombre réel L, soit ��.
Supposons que lim

n���
un � L.

Comme �un�n"N est croissante, on a : ¾n " N, un ' u0, soit un ' 1.

Par passage à la limite, on a alors : L ' 1 ���
De plus, �un�n"N est du type un�1 � f�un� avec f � x( xe

1©x
.

f est continue sur R
�
donc en L.

D’après le théorème du point fixe, L est un point fixe de f . Elle est donc
solution de l’équation f�x� � x.

Or, f�x� � x¿ xe
1©x

� x

¿ x �e1©x � 1	 � 0

¿ x � 0 ou e
1©x

� 1 � 0

¿ x � 0 ou
1
x � 0Í ÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ

impossible

.

0 est donc le seul point fixe de f . Donc L � 0, ce qui contredit ���.
On conclut que lim

n���
un � ��.

2)programme

import numpy as np

u=1

n=0

while u<10**6:

u=u*np.exp(1/u)

n=n+1

print(n)
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Partie B :

3)a lim
x���

1
x � 0 et lim

t�0
e
t
� 1. Par composition, lim

x���
e
1©x

� 1.

lim
x���

x � ��. Par produit, lim
x���

f�x� � ��.

a lim
x�0�

1
x � �� et lim

t���
e
t
� ��. Par composition, lim

x�0�
e
1©x

� ��.

lim
x�0�

x � 0. Donc lim
x�0�

f�x� est une FI du type 0 � ��.

Posons X �
1
x . Quand x� 0

�
, X � ��.

Donc lim
x�0�

f�x� � lim
X���

1

X
e
X
� lim

X���

e
X

X
� �� par croiss. comparées.

4)f est dérivable sur �0,��� par produit et composées de fonctions dérivables.

¾x % 0, f
¬�x� � 1 � e

1©x
� x � �� 1

x2
e
1©x


� e
1©x

�
1
xe

1©x

� �1 � 1
x
 e1©x

�
x � 1
x e

1©x
.

x % 0 et e
1©x

% 0 donc f
¬�x� est du signe de x � 1.

t

f
¬�x�
f�x�

0 1 ��

� 0 �

����

ee

����

5)a)La série =
k'0

x
�k

k!
peut se réécrire sous la forme : =

k'0

�1©x�k
k!

.

Il s’agit de la série exponentielle de paramètre 1©x.
Elle converge et sa somme vaut :

��

=
k�0

x
�k

k!
� e

1©x
.

b)f�x� � xe
1©x

� x
��

=
k�0

x
�k

k!
� x�x0

0!
�

x
�1

1!
�

��

=
k�2

x
�k

k!
�
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� x�1 � 1
x �

��

=
k�2

x
�k

k!
� � x � 1 � x

��

=
k�2

x
�k

k!
� x � 1 �

1
x � x

2
��

=
k�2

x
�k

k!
.

Enfin, en rentrant x
2
dans la somme :

f�x� � x � 1 �
��

=
k�2

x
2�k

k!
.

6)a)Soit x ' 1.

a)a
��

=
k�2

x
2�k

k!
est une somme dont tous les termes sont positifs.

Donc
��

=
k�2

x
2�k

k!
'

x
2�2

2!
, c’est-à-dire

��

=
k�2

x
2�k

k!
'

1

2
.

a x ' 1 donc 0 $
1
x & 1.

Pour k ' 2, la fonction t( t
k�2

est croissante sur R� donc �1x

k�2

& 1,

c’est-à-dire x
2�k

& 1.

On a donc ¾k ' 2,
x
2�k

k!
&

1

k!
(1)

La série=
k'2

1

k!
�=

k'2

1
k

k!
converge car c’est une série exponentielle (tronquée)

de paramètre 1.

En sommant les inégalités (1) pour k allant de 2 à ��, on a :

��

=
k�2

x
2�k

k!
&

��

=
k�2

1

k!
.

Or,
��

=
k�2

1

k!
&

��

=
k�0

1

k!
� e

1
� e. Donc

��

=
k�2

x
2�k

k!
& e.

Finalement, on a :
1

2
&

��

=
k�2

x
2�k

k!
& e.

b)En divisant membre à membre les inégalités ci-dessus par x, on a :

1

2x
&

1
x

��

=
k�2

x
2�k

k!
&

e
x , puis en utilisant 5)b) :

1

2x
& f�x� � �x � 1� & e

x ���
7) lim

x���

1

2x
� 0 et lim

x���

e
x � 0.
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D’après la propriété des gendarmes, lim
x���

�f�x� � �x � 1�� � 0.

Cela signifie que f�x�� �x�1� �
��

o�1�, c’est-à-dire : f�x� �
��

x�1� o�1�.
8)La droite d’équation y � x � 1 est asymptote oblique à Cf en ��.
Les variations de f sont données par la question 4).

�2 �1 0 1 2 3 4

�1

1

2

3

4

5

6

Cf

Partie C :

9)a)Pour tout k " N, on a :

ln �uk�1� � ln �uk� � ln �uke1©uk	 � ln �uk�
� ln �uk� � ln �e1©uk	 � ln �uk�
�

1
uk

.

b)Soit n " N
�
.

En sommant les égalités précédentes pour k allant de 0 à n � 1, on a :

n�1

=
k�0

�ln �uk�1� � ln �uk�� � n�1

=
k�0

1
uk

.

Par télescopage, on a :
n�1

=
k�0

�ln �uk�1� � ln �uk�� � ln �un� � ln �u0� � ln �un� car u0 � 1.

On conclut que ¾n " N
�
, ln �un� � n�1

=
k�0

1
uk

.
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10)a)La suite �un�n"N est croissante et u0 � 1 donc ¾k " N, uk ' 1.

Il est alors valide d’utiliser ��� avec x� uk, ce qui donne :

¾k " N,
1

2uk
& f �uk� � �uk � 1� & e

uk
.

Et comme f �uk� � uk�1, on déduit immédiatement :

¾k " N, 1 �
1

2uk
& uk�1 � uk & 1 �

e
uk

.

b)Soit n " N
�
.

a En sommant les égalités ci-dessus pour k allant de 0 à n � 1, on a :
n�1

=
k�0

�1 � 1

2uk

 & n�1

=
k�0

�uk�1 � uk� & n�1

=
k�0

�1 � e
uk

	.
Calculons chacune des sommes.
n�1

=
k�0

�1 � 1

2uk

 � n�1

=
k�0

1 �
n�1

=
k�0

1

2uk
� n �

1

2

n�1

=
k�0

1
uk

,

Par télescopage,
n�1

=
k�0

�uk�1 � uk� � un � u0 � un � 1,

n�1

=
k�0

�1 � e
uk

	 � n�1

=
k�0

1 �
n�1

=
k�0

e
uk

� n � e
n�1

=
k�0

1
uk

.

En remplaçant, on conclut :

n �
1

2

n�1

=
k�0

1
uk

& un � 1 & n � e
n�1

=
k�0

1
uk

.

a En ajoutant membre à membre par 1 � n, on a :

1 �
1

2

n�1

=
k�0

1
uk

& un � n & 1 � e
n�1

=
k�0

1
uk

.

Enfin, en appliquant 9)b) :

1 �
1

2
ln �un� & un � n & 1 � e ln �un� .

11)a)On sait d’après la question 1)c) que lim
n���

un � ��.

Par croissances comparées, on a par ailleurs : lim
x���

lnx
x � 0.

On déduit que lim
n���

ln �un�
un

� 0.

b)En divisant membre à membre la deuxième inégalité 10)b) par un, on a :

1
un
�

1

2
�

ln �un�
un

& 1 �
n
un

&
1
un
� e �

ln �un�
un

.
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On sait que lim
n���

ln �un�
un

� 0.

De plus, lim
n���

un � �� donc lim
n���

1
un

� 0.

Donc lim
n���

� 1
un
�

1

2
�

ln �un�
un


 � 0 et lim
n���

� 1
un
� e �

ln �un�
un


 � 0.

D’après la propriété des gendarmes, lim
n���

�1 � n
un

	 � 0.

On a donc lim
n���

n
un

� 1, ce qui signifie que un �
��

n.

12)
n�1

=
k�0

1
uk

� ln �un� d’après 9)b)

� ln �unn � n	
� ln �unn 	 � ln�n�

Or, un �
��

n. Donc lim
n���

un
n � 1, puis lim

n���
ln �unn 	 � 0.

On a donc
n�1

=
k�0

1
uk

�
��

o�1� � ln�n�, ce qui entrâıne que :

n�1

=
k�0

1
uk

�
��

ln�n�.
Remarque
A partir de l’équivalent un �

��

n, il aurait été prématuré de conclure que

ln �un� �
��

ln�n�.
En effet, on n’a pas le droit d’appliquer une fonction de part et d’autre
d’un équivalent.
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Exercice 2 (eml 2025)

Partie A :

1)E � Vect �I, J,K� donc �I, J,K� est une famille génératrice de E .

De plus, pour tous réels a, b et c, on a :

aI � bJ � cK � 0

¿ a
����

1 0 0
0 1 0
0 0 1


��� � b
����

0 1 1
1 0 0
1 0 0


��� � c
����

1 0 0
0 0 1
0 1 0


��� �
����

0 0 0
0 0 0
0 0 0


���
¿

����
a � c b b
b a c
b c a


��� �
����

0 0 0
0 0 0
0 0 0


���
¿ a � b � c � 0.

Donc �I, J,K� est libre.

�I, J,K� est une famille libre et génératrice de E , c’est donc une base de E
et dimE � 3.

2)J et K sont symétriques donc diagonalisables.

3)a)J
2
�
����

2 0 0
0 1 1
0 1 1


��� et J
3
�
����

0 2 2
2 0 0
2 0 0


��� � 2J .

b)Posons P �X� � X
3
� 2X.

D’après la question précédente, P �J� � J
3
� 2J � 0. Donc P est un po-

lynôme annulateur de J .

De plus, P �x� � 0¿ x�x2 � 2� � 0¿ x � 0 ou x
2
� 2

¿ x � 0 ou x �
Ó
2 ou x � �

Ó
2.

D’après le cours, les valeurs propres de J sont à chercher parmi les racines
de P . Ainsi, sp�J� L s�Ó2, 0,Ó2y.
4)a)JU1 �

����
0 1 1
1 0 0
1 0 0


���
����

Ó
2
1
1


��� �
����

2Ó
2Ó
2


��� �
Ó
2U1.

De plus, U1 est non nul. Donc U1 est un vecteur propre de J associé à
Ó
2.

JU2 �
����

0 1 1
1 0 0
1 0 0


���
����

0
1
�1


��� �
����

0
0
0


��� � 0U2.

De plus, U2 est non nul. Donc U2 est un vecteur propre de J associé à 0.

Remarque
Avoir trouvé U1 non nul tel que JU1 �

Ó
2U1 montre que EÓ

2�J� j r0x et
confirme que

Ó
2 est valeur propre de J .

Même remarque pour U2.
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b)En s’inspirant du calcul fait pour U1, on peut prendre U3 �
����
�
Ó
2

1
1


���.

On a alors : JU3 �
����

0 1 1
1 0 0
1 0 0


���
����
�
Ó
2

1
1


��� �
����

2

�
Ó
2

�
Ó
2


��� � �
Ó
2U3.

U3 est non nul. Donc U3 est un vecteur propre de J associé à �
Ó
2.

Remarques
1)Comme pour la remarque précédente, avoir trouvé U3 non nul tel que
JU3 � �

Ó
2U3 montre que E

�

Ó
2�J� j r0x et confirme que �

Ó
2 est valeur

propre de J .
2)Si on manque d’idées pour deviner U3, on peut toujours poser

U3 �
����

a
b
c


��� et résoudre le système issu de l’égalité JU3 � �
Ó
2U3.

5)a)U1, U2 et U3 sont des vecteurs propres de J associés à des valeurs
propres différentes. D’après le cours, la famille �U1, U2, U3� est libre.

C’est une famille libre de M3,1�R�. Cette famille a un cardinal égal à 3 qui
cöıncide avec la dimension de M3,1�R�. C’est donc une base de M3,1�R�.
b)Construisons la matrice P de sorte que ses colonnes soient U1, U2 et U3.

C’est-à-dire : P �
����

Ó
2 0

Ó
2

1 1 �1
1 �1 �1


���.
P est inversible car c’est la matrice de passage entre la base canonique de
M3,1�R� et la base �U1, U2, U3�.
Posons D �

����
Ó
2 0 0
0 0 0

0 0 �
Ó
2


���.
Les égalités matricielles JU1 �

Ó
2U1, JU2 � 0U2 et JU3 � �

Ó
2U3 se

synthétisent alors en l’égalité : JP � PD, c’est-à-dire : P
�1
JP � D.

Remarque
On pouvait aussi évoquer le fait que J est diagonalisable, comme matrice
de taille 3 ayant 3 valeurs propres distinctes.
D’après le cours, il existe alors P inversible et D diagonale telles que
J � PDP

�1
, les colonnes de P étant formées des bases des sous-espaces

propres de J , la diagonale de D formée des valeurs propres de J .

6)a)On trouve immédiatement KU1 � 1U1, KU2 � �1U2 et KU3 � 1U3.

U1, U2 et U3 sont non nuls. Ce sont des vecteurs propres de K associés
respectivement à 1, �1 et 1.
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C’est par ailleurs une base de M3,1�R� d’après la question 5)a).

C’est donc finalement une base de vecteurs propres de K.

b)Posons ∆ �
����

1 0 0
0 �1 0
0 0 1


���.
De nouveau, les égalités KU1 � 1U1, KU2 � �1U2 et KU3 � 1U3 se
résument matriciellement en l’égalité KP � P∆, c’est-à-dire P

�1
KP � ∆.

On a donc P
�1
KP �

����
1 0 0
0 �1 0
0 0 1


���.
7)a)Par énoncé, on a : M � aI � bJ � cK.

On déduit en multipliant à gauche par P
�1

et à droite par P :

P
�1
MP � P

�1�aI � bJ � cK�P
� aP

�1
IP � bP

�1
JP � cP

�1
KP

� aI � bD � c∆

� a
����

1 0 0
0 1 0
0 0 1


��� � b
����

Ó
2 0 0
0 0 0

0 0 �
Ó
2


��� � c
����

1 0 0
0 �1 0
0 0 1


���
�
����

a � b
Ó
2 � c 0 0

0 a � c 0

0 0 a � b
Ó
2 � c


��� .
P
�1
MP est une matrice diagonale.

Ainsi, M est semblable à cette matrice diagonale. Elle a donc les mêmes
valeurs propres, à savoir a � b

Ó
2 � c, a � c et a � b

Ó
2 � c.

Remarque
Rien ne dit que ces valeurs propres soient deux à deux distinctes !

8)a)Notons �e1, e2, e3� la base canonique de R
3
.

s�I� � s�1I � 0J � 0K� � �1, 1, 1� � 1e1 � 1e2 � 1e3,

s�J� � s�0I � 1J � 0K� � �Ó2, 0,�Ó2� � Ó
2e1 � 0e2 �

Ó
2e3,

s�K� � s�0I � 0J � 1K� � �1,�1, 1� � 1e1 � 1e2 � 1e3.

Donc S �
����

1
Ó
2 1

1 0 �1

1 �
Ó
2 1


���.
b)On transforme S par les opérations de Gauss.

S �
����

1
Ó
2 1

1 0 �1

1 �
Ó
2 1


���
L1

L2

L3

.
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����
1

Ó
2 1

0
Ó
2 2

0 2
Ó
2 0


���
L1

L2 � L1 � L2

L3 � L1 � L3

.

����
1

Ó
2 1

0
Ó
2 2

0 0 4


���
L1

L2

L3 � 2L2 � L3

.

On obtient une matrice triangulaire dont les coefficients diagonaux sont
tous non nuls.

S est donc inversible.
Comme S � M�I,J,K��s�, on conclut que s est bijective.

Remarque
On pouvait aussi calculer Ker�s� et voir que Ker�s� � r0x.

Partie B :

9)Programme :

def voisins(A,i):

n=len(A[i])

V=[]

for j in range(n):

if j!=1 and A[i,j]!=0:

V.append(j)

return V

Remarque
Un graphe simple est un graphe où il n’y a qu’une seule arête entre deux
sommets distincts et où il n’y a aucune boucle.
Ici, l’énoncé ne dit rien à ce sujet.
Si le graphe est simple, la matrice d’adjacence A n’est composée que de 0
et de 1, on peut donc remplacer la commande A[i,j]!=0 par A[i,j]=1.

10)Programme :

def min_ext(L):

m=0

while m in L:

m=m+1

return m
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11)Programme :

def coloration(A):

n=len(A[0])

C=[k for k in range(n)]

for i in range(1,n):

C_voisins=[C[j] for j in voisins(A,i)]

C[i]=min_ext(C_voisins)

return C

12)a)Le graphe comporte n � 6 sommets. Avant la boucle : C=[0,1,2,3,4,5].

Puis, on parcourt la boucle pour i allant de 1 à 5.

i � 1
Les voisins de s1 sont donnés par la liste : voisins(A,1)=[0,2,5]
Puis, la couleur de ces voisins est donnée par la liste : C voisins=[0,2,5]
Enfin, on cherche le plus petit entier naturel n’appartenant à cette liste,
c’est 1. Donc C�1� � 1.
Ainsi, C n’a pas changé et vaut toujours : C=[0,1,2,3,4,5].

i � 2
Les voisins de s2 sont donnés par la liste : voisins(A,2)=[1,3,5]
Puis, la couleur de ces voisins est donnée par la liste : C voisins=[1,3,5]
Enfin, on cherche le plus petit entier naturel n’appartenant à cette liste,
c’est 0. Donc C�2� � 0.
Cette fois-ci, C a changé et vaut : C=[0,1,0,3,4,5].

i � 3
Les voisins de s3 sont donnés par la liste : voisins(A,3)=[0,2,4]
Puis, la couleur de ces voisins est donnée par la liste : C voisins=[0,0,4]
Enfin, on cherche le plus petit entier naturel n’appartenant à cette liste,
c’est 1. Donc C�3� � 1.
C change donc et vaut : C=[0,1,0,1,4,5].

i � 4
Les voisins de s3 sont donnés par la liste : voisins(A,4)=[0,3,5]
Puis, la couleur de ces voisins est donnée par la liste : C voisins=[0,1,5]
Enfin, on cherche le plus petit entier naturel n’appartenant à cette liste,
c’est 2. Donc C�4� � 2.
C change donc et vaut : C=[0,1,0,1,2,5].

i � 5
Les voisins de s3 sont donnés par la liste : voisins(A,5)=[1,2,4]
Puis, la couleur de ces voisins est donnée par la liste : C voisins=[1,0,2]
Enfin, on cherche le plus petit entier naturel n’appartenant à cette liste,
c’est 3. Donc C�5� � 3.
C change donc et vaut : C=[0,1,0,1,2,3].

En conclusion, la fonction coloration(A) renvoie la liste [0,1,0,1,2,3].
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b)Le programme précédent a permis d’obtenir la coloration à 4 couleurs ci-
dessous et réalise la contrainte souhaitée, à savoir que deux sommets voisins
sont de couleurs différentes :

0 1

1 0

32

Cependant, ce programme ne fournit pas de coloration à 3 couleurs.
Pourtant, le graphe G en possède une, comme le montre le dessin ci-dessous :

0 1

1 2

02
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Exercice 3 (eml 2025)

Partie A :

1)a)La fonction g � u(
1Ó
u
� u

�1©2
est dérivable sur �0, 1� comme inverse

d’une fonction dérivable dont le dénominateur ne s’annule pas.

¾u "�0, 1�, g
¬�u� � �1

2
u
�3©2

$ 0.

g est strictement décroissante et continue (car dérivable) sur �0, 1�.
Elle réalise une bijection de �0, 1� sur g��0, 1�� � �g�1�, lim

u�0�
g�u��� �1,���.

Ainsi, comme U�Ω� ��0, 1�, on a alors : V �Ω� � �1,���.
b)Par définition, ¾x " R, FV �x� � P �V & x�.
On distingue deux cas :

a x $ 1
L’événement �V & x� est alors inclus dans l’événement �V $ 1�, lequel est
vide puisque V �Ω� � �1,���.
Donc FV �x� � 0.

a x ' 1

FV �x� � P �V & x�
� P � 1Ó

U
& x


� P �ÓU '
1
x
 par décroissance de la fonction inverse sur �0,���

� 1 � P �ÓU $
1
x


� 1 � P �U $
1

x2

 par croissance de la fonction carrée sur �0,���

� 1 � FU � 1

x2

 .

De plus, comme U 0 U ��0, 1��, on a :

FU�t� �
~��������

0 si t $ 0
t si 0 & t & 1
1 si t % 1

Or, x
2
' 1 donc

1

x2
"�0, 1�, ce qui entraine que FU � 1

x2

 � 1

x2
.

On a donc finalement : FV �x� � 1 �
1

x2
.
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On conclut que FV �x� �
~������������

1 �
1

x2
si x ' 1

0 si x $ 1

c)a FV est continue sur �1,��� comme différence et inverse de fonctions
continues. FV est continue sur � ��, 1� comme fonction nulle.
De plus, lim

x� 1�
FV �x� � lim

x� 1�
0 � 0.

De plus, FV �1� � 1 �
1

12
� 0.

On a donc lim
x� 1�

FV �x� � FV �1�, ce qui montre que FV est continue à

gauche en 1.

Par ailleurs, FV est continue à droite en 1 puisqu’elle est continue sur�1,���. Donc FV est continue en 1.

Finalement, FV est continue sur R.

FV est de classe C
1
sur �1,��� comme différence et inverse de fonctions

de classe C
1
. FV est de classe C

1
sur � ��, 1� comme fonction nulle.

FV est donc de classe C
1
sur R, sauf peut-être en 1.

On conclut que V est une variable aléatoire à densité.

a Une densité fV de V s’obtient en dérivant FV aux points où elle est
dérivable, c’est-à-dire pour x j 1 et en prenant une valeur arbitraire positive
ou nulle pour x � 1.

On a donc ¾x j 1, fV �x� � F
¬

V �x� �
~������������

2

x3
si x % 1

0 si x $ 1

En prenant par exemple fV �1� � 0, on, obtient finalement :

fV �x� �
~������������

2

x3
si x % 1

0 si x & 1

Remarque
On aurait tout aussi bien pu prendre fV �1� � 2 pour recoller avec la
première formule, ce qui aurait donné :

fV �x� �
~������������

2

x3
si x ' 1

0 si x $ 1

Une densité n’est pas unique !
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2)a V admet une espérance si et seulement si E ��

��

¶xfV �x�¶dx converge.

Comme x( xfV �x� est nulle sur ���, 1� et positive sur �1,���, on est

ramené à étudier la convergence de E ��

1
xfV �x�dx.

Or, E ��

1
xfV �x�dx � E ��

1

2

x2
dx converge car elle a même nature que

l’intégrale de Riemann E ��

1

1

x2
dx, laquelle converge car 2 % 1.

Donc V admet une espérance donnée par :

E�V � � E ��

��

xfV �x�dx
� E 1

��

0dx � E ��

1

2

x2
dx

� lim
A���

E A

1

2

x2
dx

� lim
A���

��2
x�

A

1

� lim
A���

�� 2

A
� 2


� 2.

a D’après le théorème de transfert, V
2
admet une espérance si et seulement

si E ��

��

¶x2fV �x�¶dx converge.

Comme x( x
2
fV �x� est nulle sur ���, 1� et positive sur �1,���, on est

ramené à étudier la convergence de E ��

1
x
2
fV �x�dx.

Or, E ��

1
x
2
fV �x�dx � E ��

1

2
xdx diverge car elle a même nature que

l’intégrale de Riemann E ��

1

1
xdx, laquelle diverge.

Donc V n’admet pas d’espérance et n’admet donc pas non plus de variance.

Partie B :

3)a)Pour tout x réel, on a :

Fn�x� � P �Mn & x�
� P ��V1 & x� = ... = �Vn & x�� par propriété du max

� P �V1 & x� ��� P �Vn & x� par indépendance mutuelle des Vi

� FV �x� ��� FV �x� car les Vi ont même loi que V

Ainsi, ¾x " R, Fn�x� � FV �x�n, c’est-à-dire que Fn � �FV �n.
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b)On a donc : Fn�x� �
~������������

�1 � 1

x2

n si x ' 1

0 si x $ 1

Cherchons lim
n���

Fn�x� en distinguant deux cas :

a x $ 1
lim

n���
Fn�x� � lim

n���
0 � 0.

a x ' 1

On a alors : 0 $
1

x2
& 1, puis 0 & 1 �

1

x2
$ 1.

On déduit que lim
n���

�1 � 1

x2

n � 0, c’est-à-dire lim

n���
Fn�x� � 0.

Ainsi, ¾x " R, lim
n���

Fn�x� � 0.

c)Supposons que �Mn�n'1 converge en loi vers une variable aléatoire Z.

Notons E , l’ensemble des réels où FZ est continue.

D’après la définition de la convergence en loi, on a :

¾x " E , lim
n���

Fn�x� � FZ�x�.
En utilisant la question précédente, on a donc :

¾x " E , FZ�x� � 0 ���.
Distinguons trois cas :

a Z est à densité
Alors, FZ est continue sur E � R.
D’après ���, on déduit : ¾x " R, FZ�x� � 0.

En passant à la limite, on a : lim
x���

FZ�x� � 0.

En tant que fonction de répartition, FZ doit vérifier : lim
x���

FZ�x� � 1, ce

qui mène à une contradiction.

a Z�Ω� est une partie finie de Z
Z est alors discrète finie. Posons Z�Ω� � rz1, ..., znx avec z1 $ ... $ zn.
D’après le cours, FZ est continue sur E � R¯rz1, ..., znx donc sur �zn,���.
D’après ���, on a alors : ¾x % zn, FZ�x� � 0.

En passant à la limite, on a : lim
x���

FZ�x� � 0.

Ce qui contredit de nouveau le fait que lim
x���

FZ�x� � 1.

a Z�Ω� est une partie infinie de Z.
Z est alors discrète infinie.
D’après le cours, FZ est continue sur E � R ¯ Z�Ω�.
D’après ���, on a : ¾x " R ¯ Z�Ω�, FZ�x� � 0 (1)
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Soit x " Z�Ω�. Comme Z�Ω� est dénombrable, il existe un réel y ' x tel
que y � Z�Ω�.
Par croissance de FZ , on a alors : FZ�x� & FZ�y�.
Puis par positivité de la fonction de répartition : 0 & FZ�x� & FZ�y�.
Comme y � Z�Ω�, on a FZ�y� � 0 , d’où FZ�x� � 0.

Ainsi, ¾x " Z�Ω�, FZ�x� � 0 (2)

De (1) et (2), on déduit que ¾x " R, FZ�x� � 0.

En passant à la limite, on a : lim
x���

FZ�x� � 0.

Ce qui contredit de nouveau le fait que lim
x���

FZ�x� � 1.

Remarque
Je n’ai pas traité le cas où X n’est ni à densité, ni discrète. Cela sort du
cadre du programme.
Cette question est trop difficile, l’énoncé aurait du préciser : 8 Justifier
que la suite �Mn�n'1 ne converge en loi vers aucune variable aléatoire
à densité 9.

4)a)Soit x % 0. Prenons n suffisamment grand, de sorte que x
Ó
n ' 1.

Gn�x� � P �MnÓ
n
& x


� P �Mn & x
Ó
n�

� Fn �xÓn�
� �1 � 1�xÓn�2


n

car ¾t ' 1, Fn�t� � �1 � 1

t2

n

� �1 � 1

nx2

n

� exp �n ln �1 � 1

nx2


 .

Comme ln�1 � x� �
0
x et lim

n���

1

nx2
� 0, on déduit :

ln �1 � 1

nx2

 �
��

�
1

nx2
, puis : n ln �1 � 1

nx2

 �
��

�
1

x2
.

On a donc lim
n���

n ln �1 � 1

nx2

 � � 1

x2
, puis lim

n���
Gn�x� � e

�
1

x2 .

b)Soit x " R. Distinguons deux cas :

a x % 0
On a montré en 4)a) que lim

n���
Gn�x� � FW �x�.

a x & 0
Gn�x� � Fn �xÓn�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

$0

� 0 car Fn est nulle sur � ��, 0�.
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Donc lim
n���

Gn�x� � 0 � FW �x�.
On a établi que ¾x " R, lim

n���
Gn�x� � FW �x�, ce qui prouve que la suite

�MnÓ
n


n'1

converge en loi vers W .

Partie C :

5)a)SELECT montant FROM sinistres WHERE annee=2024;

b)SELECT mois,annee FROM sinistres WHERE montant>1000000;

6)INSERT INTO sinistres VALUES (7652,2025,"avril",1540);

Partie D :

7)N 0P�λ� donc N�Ω� � N et ¾n " N, P �N � n� � e
�λ
�

λ
n

n!
.

8)T �Ω� � N.

9)Soit n " N
�
.

a)Supposons l’événement �N � n� réalisé. Le nombre de sinistres de l’année
vaut donc n.
L’expérience aléatoire est alors constituée de n épreuves (épreuve=sinistre)
successives et indépendantes (du fait que V1,...,Vn sont indépendantes).
A chaque épreuve, la probabilité de succès (succès si le montant du sinistre
est % A) vaut :

P �V % A� � 1 � P �V & A� � 1 � FV �A� � 1

A2
.

Enfin, T compte le nombre de succès.

Donc la loi conditionnelle de T sachant �N � n� est la loi B �n, 1

A2

.

b)Soit k " N.

Calculons P�N�n��T � k� en distinguant deux cas :

a k & n

Grâce à la question précédente, on a : P�N�n��T � k� � � n
k


 � 1

A2

k �1 � 1

A2

n�k.

a k % n
Le nombre de sinistres dont le montant est % A ne peut pas dépasser le
nombre total de sinistres.
Donc P�N�n��T � k� � 0.

10)Soit k " N. La formule des probabilités totales pour le système complet�N � n�n"N donne :
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P �T � k� � ��

=
n�0

P�N�n��T � k�P �N � n�
�

k�1

=
n�0

P�N�n��T � k�P �N � n� � ��

=
n�k

P�N�n��T � k�P �N � n�
Dans la première somme, n $ k donc P�N�n��T � k� � 0. On poursuit :

P �T � k� � ��

=
n�k

� n
k


 � 1

A2

k �1 � 1

A2

n�k e�λ � λ

n

n!

�

��

=
n�k

n!�n � k�!k! � 1

A2

k �1 � 1

A2

n�k e�λ � λ

n

n!

�
e
�λ

k!
� � 1

A2

k ��=

n�k

λ
n

�n � k�! �1 � 1

A2

n�k

�
e
�λ

k!
� � 1

A2

k ��=

j�0

λ
j�k

j!
�1 � 1

A2

j en posant j � n � k

�
e
�λ

k!
� λ

k
� � 1

A2

k ��=

j�0

�λ �1 � 1
A2 ��j

j!

�
e
�λ

k!
� λ

k
� � 1

A2

k � e

λ�1� 1

A2 	 grâce à la série exponentielle

� e
�λ©A2 �λ©A2�k

k!
.

Donc T 0P �λ©A2�.
11)Cela correspond à l’espérance de T , c’est-à-dire λ©A2

.
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