Exercice 1 (eml 2025)
Partie A :

1)a)Récurrence.

Soit Z(n) la proposition : « u, > 0 ».

Z(0) est vraie car ug =1 > 0.

Soit n € N. Supposons Z(n) vraie. Montrons que &(n + 1) est vraie.
Par HR, u,, > 0. De plus, el > 0. Par produit, u,4+1 > 0.

On conclut que £(n) est vraie pour tout n € N.

b)Vn € N, ups1 — up = uy (ellu" - 1).

wup, > 0 donc 1/u, > 0 et e/ > 1. D'ow /™ — 1 > 0.
Par produit, u,+1—u, > 0. Donc la suite (u,, ),eN est strictement croissante.

¢)(uy )nen étant croissante, elle admet une limite. Cette limite est soit un
nombre réel L, soit +oc0.
Supposons que lim wu, = L.

n—+00

Comme (u,),en est croissante, on a : Yn € N, u,, > ug, soit u, > 1.

Par passage a la limite, on a alors : L =21 (%)

De plus, (uy,)nen est du type u,41 = f(u,) avec f:x - zell®.

f est continue sur R* donc en L.
D’apres le théoreme du point fixe, L est un point fixe de f. Elle est donc
solution de I’équation f(x) = .
Or, f(z) =1 zell® = ¢
(:»x(el/z - 1) =0

YT _1=0

—z=0o0ue

1
ezxr=0 ou =—==0
H—I
impossible
0 est donc le seul point fixe de f. Donc L = 0, ce qui contredit (*).

On conclut que lim w, = +o00.
n—+0o

2)programme

import numpy as np

u=1

n=0

while u<10**6:
u=uw*np.exp(1/u)
n=n+1

print(n)
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Partie B :

3)e lim — =0et lime' = 1. Par composition, lim M=
z—+00 L t—0 r—+00

lim x = +00. Par produit, hI—Poo f(z) = +o0.
Tr—

Tr—+00
1 t 1z _

e lim — =400 et lim e = +o00. Par composition, lim e'" = +00.

x—0* t—+00 z—-0*
lim x = 0. Donc lim f(x) est une FI du type 0 X +00.
z—07* z—0*

1 +
Posons X = z Quand z - 0", X — +o0.
X

D lim f(x) lim ! eX = lim S +00 par croiss. comparées

onc = e = — = . .

r—-0% X —-+00 X X—-+00 X p p

4) f est dérivable sur 0, +00[ par produit et composées de fonctions dérivables.

x 1 X
Yz >0, f'(:c):1><el/ +xx(——el/)

2
x ]' €T
_ oME Eell
_ 1 1/x
= (1 - E) e
T—=1 1/s
=——¢ .
2> 0et e!” >0 done f'(z) est du signe de z — 1.
t 0 1 +00
f'(2) - 0 +
+00 +00
f(z)
\ . /
o o 5 /)
5)a)La série kz R peut se réécrire sous la forme : kZ: AR
=0 >0

Il s’agit de la série exponentielle de parametre 1/z.

Elle converge et sa somme vaut :

0 -1 +00 -k
b)f(x) = —xz o :x(%+xl—‘+zxk—')
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+o00 —k +o00 -k +o00 -k
1 1 T 1 T 1 1 o T
=X + T + }:-75— =x+ +:E§:'7a— =x+ 1+ E-X:E E:'7gr.
k=2 k=2 k=2
2
Enfin, en rentrant z° dans la somme :

2-k

+00
f($)=$+1+z%
k=2

6)a)Soit = = 1.

+o00  2-k
a)e Z A est une somme dont tous les termes sont positifs.
k=2
+00  2-k 2-2 +oo  2-k 1

x x s x
Donc ’; o > 7 C est-a-dire ]; o 2 5.

exr>1doncO0< ==<1.

K| =

k=2
Pour k = 2, la fonction t — t*72 est croissante sur R, donc (E) <1,

N 2-k
c’est-a-dire x < 1.

2—k
x 1
On a donc Yk = 2, S (1)
1 1*
La série Z i Z 7 converge car c’est une série exponentielle (tronquée)
k=22 k=2

de parametre 1.

En sommant les inégalités (1) pour k allant de 2 & +00, on a :

+00 2-k
1 x

Finalement, on a : 5 < S <e.
k=2
b)En divisant membre & membre les inégalités ci-dessus par x, on a :
1 +oo 2 k
57 5% 7 s , puis en utilisant 5)b) :

%Sf(w)—(xﬂ)s; (%)

1 . e
7) lim 5—=0et lim —=0.

r—>+00 2 T—>+00
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D’apres la propriété des gendarmes, lian (f(z) - (z+1)) =
Tr—4+00
Cela signifie que f(z)—(z+1) I o(1), c’est-a-dire : f(x) oot 1+0(1).
o0 (o]

8)La droite d’équation y = = + 1 est asymptote oblique a € en +oo.
Les variations de f sont données par la question 4).

Partie C :

9)a)Pour tout £k € N, on a :
In (upe1) — In(ug) = ln(ukelluk) — In (uy,)

=1In(uy) + ln(ellu’“) — In (uy)
1
= o

b)Soit n € N*.

En sommant les égalités précédentes pour k allant de 0 an—1, on a :

i In (upe1) = In (u)) = iui

Par télescopage, on a :

n—1

Z (In (ugs1) = In (ug)) = In (u,) = In (ug) = In(u,) car ug = 1.
k=0

n—1

On conclut que Yn € N*, In(u,) = Z e
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10)a)La suite (u,)nen est croissante et ug = 1 donc Vk € N, uy > 1.

Il est alors valide d’utiliser {*) avec x — wuy, ce qui donne :

1 e
Yk € N, msf(uk)—(uk+1)s—.

Uk

Et comme f (uj) = upy41, on déduit immédiatement :

1 e
Vk €N, 1+m<uk+1_uk<l+_k

b)Soit n € N*.

e En sommant les égalités ci-dessus pour k allant de 0 a n — 1, on a :
n—1 1 n—1 n—1 e

Z (1+m)< Z (uk+1—uk)s Z <1+u_k)

k=0 k=0 k=0

Calculons chacune des sommes.

n—1 1 n—1 n—1 1 1n—1 1
Z(1+m)=21+2m=n+§ U_k’
k=0 k=0 k=0 k=0
n—1
Par télescopage, Z (Ups1 — ug) = Uy — ug = Uy, — 1,
k 0
n—1 e n—1 1
Z(1+—) Zl+zu— +€Zu—k
k=0 k=0

En remplagant, on conclut :

11 — 1
izu—ﬁ —1<n+620u—k.
e En ajoutant membre a membre par 1 —n, on a :
1
1+ —Sfun—ns1+ezu—k.
k=0
Enfin, en appliquant 9)b) :
1
1+§ln(un)Sun—nsl+eln(un).

11)a)On sait d’apres la question 1)c) que lim wu, = +00.
n—+0o
Inz

Par croissances comparées, on a par ailleurs : lim —— = 0.
z—+00 T

In () _

On déduit que lim

n—+0o n

b)En divisant membre & membre la deuxieme inégalité 10)b) par u,,, on a :

1 +1 In (u,) - n 1 +exln(un).

oy ox /oo <&

Un U’n un UTL n
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On sait que lim = 0.
n—+oo  Up

De plus, hm U, = +00 donc lim — =0.
n—+oo Up

Donc lim (i+1xln(u”))=0et lim (ui+exln£u”))=0.

n—+oo \ Up 2 Up, n—+00 n n

n
D’apres la propriété des gendarmes, lim (1 - —) =0.
n—+00 U

n

On a donc lim — =1, ce qui signifie que uw,, ~ n.
U, +00

n—+00
i ui =1In(u,) dapres9)b)
=In (% X n)

—ln(zjl)+ln( )

Or, u, o2 Donc lim %—1 puis lim ln(l:;)=0.

n—+oo n—+oo
n—1
On a donc X Un v o(1) + In(n), ce qui entraine que :
— 1
Z o In(n).
Remarque

A partir de I'équivalent u,, ~ n, il aurait été prématuré de conclure que
+00
In(u,) ~ In(n).
+00

En effet, on n’a pas le droit d’appliquer une fonction de part et d’autre
d’un équivalent.
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Exercice 2 (eml 2025)
Partie A :
1)& = Vect (I, J, K) donc (I, J, K) est une famille génératrice de &.

De plus, pour tous réels a, b et ¢, on a :
al +bJ +cK =0

1 00 011 1 00 0 00

—aqa|l 01 0 |+ 1 0 0 |+¢[ O O 1 [=] 0 0 O

0 01 1 00 010 0 0 0
a+c b b 0 0 0
= b a ¢ [=] 0 0 0
b ¢ a 0 0 0

—=a=b=c=0.
Donc (I, J, K) est libre.

(I,J, K) est une famille libre et génératrice de &, c’est donc une base de &
et dimé& = 3.

2)J et K sont symétriques donc diagonalisables.

2 0 0 02 2
a)J>=| 0 1 1 [etJ?=]| 2 0 0 |=2J.
011 2 0 0

b)Posons P(X) = X* - 2X.

D’apres la question précédente, P(J) = J* =27 = 0. Donc P est un po-
lynéme annulateur de J.

De plus, P(z) =0 & z(z° -2) =0 e 2 =0ou z° = 2

e r=00ouz=+v2o0uz=-v2.

D’apres le cours, les valeurs propres de J sont & chercher parmi les racines
de P. Ainsi, sp(J) C {—\/5,0,\/5}.

011 V2 2
Da)JU; = 1 0 0 1 |=] V2 |=V2U.
100 1 V2
De plus, U; est non nul. Donc U; est un vecteur propre de J associé a v/2.
011 0 0
JU2 = 1 00 1 = 0 = OU2
1 0 0 -1 0

De plus, U; est non nul. Donc Us est un vecteur propre de J associé a 0.

Remarque

Avoir trouvé Uy non nul tel que JU; = v2U; montre que E5(J) # {0} et
confirme que V2 est valeur propre de J.

Meéme remarque pour Us.
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=
1

b)En s’inspirant du calcul fait pour Uy, on peut prendre Uz =

01 1 -2 2
Onaalors: JUs;=| 1 0 0 1 |=] =V2 | = -V2Us.
1 00 1 -2

Us est non nul. Donc Uy est un vecteur propre de J associé & —v/2.

Remarques
1)Comme pour la remarque précédente, avoir trouvé Uz non nul tel que
JU3 = —v2U; montre que E_z5(J) # {0} et confirme que —v2 est valeur
propre de J.
2)Si on manque d’idées pour deviner Us, on peut toujours poser

a
Us =| b | et résoudre le systeme issu de 1'égalité JUs = —v2Us.

c

5)a)Uy, Uy et Us sont des vecteurs propres de J associés a des valeurs
propres différentes. D’apres le cours, la famille (Uy, Uy, Us) est libre.

C’est une famille libre de .#5 1(R). Cette famille a un cardinal égal & 3 qui
coincide avec la dimension de .5 1(R). C’est donc une base de .3 ;(R).

b)Construisons la matrice P de sorte que ses colonnes soient Uy, Us et Us.

V2 0 V2
C’est-a-dire : P = 1 1 -1
1 -1 -1

P est inversible car c’est la matrice de passage entre la base canonique de
e%3’1(]3,) et la base (U17 UQ, Ug)

V2 00
Posons D = 0 0 0

0 0 —v2

Les égalités matricielles JU; = \/§U1, JUy = 0Uy et JU3 = —\/§U3 se
synthétisent alors en 1’égalité : JP = PD, c’est-a-dire : PP =D.

Remarque

On pouvait aussi évoquer le fait que J est diagonalisable, comme matrice
de taille 3 ayant 3 valeurs propres distinctes.

D’apres le cours, il existe alors P inversible et D diagonale telles que

J = PDP_l, les colonnes de P étant formées des bases des sous-espaces
propres de J, la diagonale de D formée des valeurs propres de J.

6)a)On trouve immédiatement KU; = 1Uy, KUy = —1U; et KUs = 1Us.

Uy, Uy et Uz sont non nuls. Ce sont des vecteurs propres de K associés
respectivement a 1, —1 et 1.
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C’est par ailleurs une base de .#31(R) d’apres la question 5)a).

C’est donc finalement une base de vecteurs propres de K.

1 0 0
b)Posons A=| 0 -1 0
0 0 1

De nouveau, les égalités KU; = 1U;, KUy = —1Uy et KU3 = 1U;3 se
résument matriciellement en I'égalité K P = PA, c’est-a-dire P'KP = A.

1 0 O
Onadonc P'KP=|0 -1 0
0O 0 1

T)a)Par énoncé, on a : M = al + bJ + cK.
On déduit en multipliant a gauche par P! et & droite par P :
P'MP =P Yal +bJ +cK)P

=aP '[P +bP"'JP +cPT'KP

=al +bD + cA
100 V2 0 0 1 0 0
=a|l 01 0 |+b] 0 0 0 |4¢| 0 -1 0
0 0 1 0 0 —V2 0 1
a+b/2+c 0 0
= 0 a-—c 0
0 0 a-b/2+c¢

P M P est une matrice diagonale.
Ainsi, M est semblable & cette matrice diagonale. Elle a donc les mémes
valeurs propres, & savoir a + bV2 + ¢, a — c et a — by/2 + c.

Remarque

Rien ne dit que ces valeurs propres soient deux & deux distinctes !
8)a)Notons (e, es, e3) la base canonique de R

s(I)=s(1I+0J +0K) =(1,1,1) = leg + leg + les,

s(J) = s(0I +1J + 0K) = (v/2,0, =v2) = v/2e1 + Oey — 2e3,
s(K)=s(0I +0J+1K)=(1,-1,1) = 1le; — leg + les.

1 V2 1
Donc S=] 1 0 -1
1 —vV2 1

b)On transforme S par les opérations de Gauss.
1 V2 1 Ly

S=(1 0 -1 Ly .
1 V2 1 Ls
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1 V2 1 L

0 V2 2 | Lye—Ly-Ly
0 2v2 0 ) Ly« Ly —Ls
1 V2 1 Ly

0 V2 2 Ly .
0 0 4 ) Ly« 2Ly~ Ly

On obtient une matrice triangulaire dont les coefficients diagonaux sont
tous non nuls.

S est donc inversible.
Comme S = (1 j i)(s), on conclut que s est bijective.

Remarque
On pouvait aussi calculer Ker(s) et voir que Ker(s) = {0}.

Partie B :

9)Programme :

def voisins(A,i):
n=len(A[i])
V=[]
for j in range(n):
if j!=1 and A[i,j]!=0:
V.append(j)
return V

Remarque

Un graphe simple est un graphe ou il n’y a qu’une seule aréte entre deux
sommets distincts et ou il n’y a aucune boucle.

Ici, I’énoncé ne dit rien a ce sujet.

Si le graphe est simple, la matrice d’adjacence A n’est composée que de 0
et de 1, on peut donc remplacer la commande A[i,j]!=0 par A[i,j]=1.

10)Programme :

def min_ext(L):
m=0
while m in L:
m=m+1

return m
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11)Programme :

def coloration(A):
n=len(A[0])
C=[k for k in range(n)]
for i in range(1l,n):
C_voisins=[C[j] for j in voisins(A,i)]
C[i]=min_ext(C_voisins)
return C

12)a)Le graphe comporte n = 6 sommets. Avant la boucle : C=[0,1,2,3,4,5].

Puis, on parcourt la boucle pour i allant de 1 a 5.

Les voisins de s; sont donnés par la liste : voisins(A,1)=(0,2,5]

Puis, la couleur de ces voisins est donnée par la liste : C_voisins=[0,2,5]
Enfin, on cherche le plus petit entier naturel n’appartenant a cette liste,
c’est 1. Donc C[1] = 1.

Ainsi, C' n’a pas changé et vaut toujours : C=[0,1,2,3,4,5].

Les voisins de sy sont donnés par la liste : voisins(A,2)=[1,3,5]

Puis, la couleur de ces voisins est donnée par la liste : C_voisins=[1,3,5]
Enfin, on cherche le plus petit entier naturel n’appartenant a cette liste,
c’est 0. Donc C[2] = 0.

Cette fois-ci, C' a changé et vaut : C=|0,1,0,3,4,5].

Les voisins de s3 sont donnés par la liste : voisins(A,3)=(0,2,4]

Puis, la couleur de ces voisins est donnée par la liste : C_voisins=[0,0,4]
Enfin, on cherche le plus petit entier naturel n’appartenant a cette liste,
c’est 1. Donc C[3] = 1.

C' change donc et vaut : C=[0,1,0,1,4,5].

Les voisins de s3 sont donnés par la liste : voisins(A,4)=(0,3,5]

Puis, la couleur de ces voisins est donnée par la liste : C_voisins=[0,1,5]
Enfin, on cherche le plus petit entier naturel n’appartenant a cette liste,
c’est 2. Donc C[4] = 2.

C' change donc et vaut : C=[0,1,0,1,2,5].

Les voisins de s3 sont donnés par la liste : voisins(A,5)=[1,2,4]

Puis, la couleur de ces voisins est donnée par la liste : C_voisins=[1,0,2]
Enfin, on cherche le plus petit entier naturel n’appartenant a cette liste,
c’est 3. Donc C[5] = 3.

C change donc et vaut : C=[0,1,0,1,2,3].

En conclusion, la fonction coloration(A) renvoie la liste [0,1,0,1,2,3].
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b)Le programme précédent a permis d’obtenir la coloration a 4 couleurs ci-
dessous et réalise la contrainte souhaitée, a savoir que deux sommets voisins
sont de couleurs différentes :

Q (©)

O O,

Cependant, ce programme ne fournit pas de coloration a 3 couleurs.
Pourtant, le graphe G en possede une, comme le montre le dessin ci-dessous :

G,
)
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Exercice 3 (eml 2025)

Partie A :

1 -
1)a)La fonction g : u = — = u 12 est dérivable sur 10,1] comme inverse

Ju

d’une fonction dérivable dont le dénominateur ne s’annule pas.

1 -
Yu €]0,1], ¢'(u) = —3u 312 ¢ .
g est strictement décroissante et continue (car dérivable) sur ]0,1].

Elle réalise une bijection de ]0,1] sur g(]0,1]) = [¢g(1), lim g(u)[= [1, +oo[.
u—07*

Ainsi, comme U(Q2) =]0,1], on a alors : V() =[1, +oo[.
b)Par définition, Vx € R, Fy (z) = P(V < z).
On distingue deux cas :

e <l

L’événement (V' < x) est alors inclus dans I’événement (V' < 1), lequel est
vide puisque V() = [1, +oo[.

Donc Fy(x) = 0.

exr=>1

par décroissance de la fonction inverse sur ]0, +oo[

1
=1-P (U < —2) par croissance de la fonction carrée sur 0, +oo[
x

-1- ()
- vl 3.

De plus, comme U < % (]0,1]), on a :

0 sit<0
Fy(t)=4t si0s<st=<1
1 sit>1

1 1 1
Or, 2 > 1 donc — €]0,1], ce qui entraine que Fy (—2) = —.
x

X .’132

On a donc finalement : Fy(r) =1 - —.
x
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1 ! iz=1
-— sizz
2

On conclut que Fy(x) =
0 siz<1
c)e Fy est continue sur [1, +0o[ comme différence et inverse de fonctions

continues. Fy, est continue sur | — 00, 1] comme fonction nulle.
De plus, lim Fy(z) = lim 0=0.
z— 17 z— 17

1
De plus, Fy/ (1) =1 - e 0.

On a donc lim Fy(z) = Fy (1), ce qui montre que Fy est continue &
z— 17
gauche en 1.

Par ailleurs, Fy est continue a droite en 1 puisqu’elle est continue sur
[1,+0o[. Donc Fy est continue en 1.

Finalement, Fy, est continue sur R.

Fy est de classe C' sur [1,+00[ comme différence et inverse de fonctions
de classe C". Fy est de classe C' sur ] = 00,1] comme fonction nulle.
Fy est donc de classe C U sur R, sauf peut-étre en 1.

On conclut que V' est une variable aléatoire a densité.

e Une densité fi, de V s’obtient en dérivant Fy aux points ou elle est
dérivable, c’est-a-dire pour x # 1 et en prenant une valeur arbitraire positive
ou nulle pour z = 1.

2
-3 six>1
Onadonc Vo #1, fy(z)=F(z)=1 %

0 six<1

En prenant par exemple fi,(1) = 0, on, obtient finalement :

2 .
— sixz>1

3
frlz)y=1 "7
0 siz=sl
Remarque
On aurait tout aussi bien pu prendre fi,(1) = 2 pour recoller avec la

premiere formule, ce qui aurait donné :

2 .
f() F sixz=1
viT) =

0 siz<l1

Une densité n’est pas unique!
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+

o)
2)e V admet une espérance si et seulement si J |z fy(x)|dx converge.
—00

Comme z - zfy/(x) est nulle sur | — 0o, 1] et positive sur ]1,+00[, on est

+00
ramené a étudier la convergence de [ xfy(z)dx.
1

+ 00 +00
Or, J' zfy(z)dx = J —dx converge car elle a méme nature que
1 1z

+00

I'intégrale de Riemann J' —dz, laquelle converge car 2 > 1.
1 T

Donc V admet une espérance donnée par :

B = [ apea

_loo +00 2
= J' 0dx + J —Qd;v
—0o0 1 T
A
= lim —Qda:

A—+00 1 T

2 A
lim [——}
A—+o00 T 1

li _2 +2
A—I»I-Poo A

= 2.

. P 2 . .
o D’apres le théoreme de transfert, V= admet une espérance si et seulement
I A
si |2° fi/(z)|dx converge.
)

Comme z — z°fi/(x) est nulle sur ] - o0, 1] et positive sur ]1, +oo[, on est
+00

PR 2
ramené a étudier la convergence de J’ x” fy(x)dx.
1

+o0 +o0
Or, ,[ 2’ fy (z)da = ,[ Zdx diverge car elle a méme nature que
1 1
+00

I'intégrale de Riemann ,[ zdx, laquelle diverge.
1

Donc V n’admet pas d’espérance et n’admet donc pas non plus de variance.
Partie B :

3)a)Pour tout x réel, on a :

Fn(x) = P(M, < x)
=P((Vi<z)n..n(V, <z)) par propriété du max
=P(Vy £x)x++x P(V, <x) par indépendance mutuelle des V;
= Fy(x) X --- X Fiy(x) car les V; ont méme loi que V

Ainsi, Vo € R, F,(z) = Fy/(2)", c’est-a-dire que F,, = (Fy)".
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(1——2) siz=z1
b)On a donc : F,(z) = r

0 sixz<l1

Cherchons hI—Poo F,(x) en distinguant deux cas :
n—

e <l
lim F,(z)= lim 0=0.
n—+00 n—-+00

e 2>1
1 ) 1
Onaalors:0< < <1,puis0<1-— <1
x x

1 n
On déduit que lim (1 - —) = 0, c’est-a-dire lim F,(z) = 0.

n—+00 xQ n—+00

Ainsi, Vo € R, lim F,(z) = 0.
n—+00
c¢)Supposons que (M,),»1 converge en loi vers une variable aléatoire Z.
Notons &, 'ensemble des réels ou Fy est continue.
D’apres la définition de la convergence en loi, on a :

Yreéd, lirgloo F,(x) = Fy(x).

En utilisant la question précédente, on a donc :
Yz €&, Fz(l’):o (*)

Distinguons trois cas :

e 7 est a densité
Alors, F'; est continue sur & = R.
D’apres (*), on déduit : Vo € R, Fz(z) = 0.

En passant a la limite, on a : lirjl Fz(x) =0.
r—+00

En tant que fonction de répartition, Fz; doit vérifier : lim Fz(x) = 1, ce
z—+00

qui meéne a une contradiction.

e Z(Q) est une partie finie de Z

7 est alors discrete finie. Posons Z(Q) = {21, ..., 2, } avec 21 < ... < z,.
D’apres le cours, Fz est continue sur & = R\ {z1, ..., 2, } donc sur ]z, +0o[.
D’apres (*), on a alors : Vx > z,, Fyz(x) =0.

En passant a la limite, on a : lianoo Fz(z) =0.
xr—
Ce qui contredit de nouveau le fait que lir}rﬂ Fz(z)=1.
Tr—+00

e Z(Q) est une partie infinie de Z.

Z est alors discrete infinie.

D’apres le cours, Fz est continue sur & = R\ Z(Q).
D’apres (*),ona: Ve R\ Z(Q), Fz(z)=0 (1)
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Soit z € Z(2). Comme Z(2) est dénombrable, il existe un réel y = x tel
que y ¢ Z().
Par croissance de Fz, on a alors : Fy(x) < Fz(y).

Puis par positivité de la fonction de répartition : 0 < Fz(z) < Fz(y).
Comme y ¢ Z(Q), on a Fz(y) =0, dott Fz(x) = 0.

Ainsi, Vo € Z(Q), Fz(z) =0 (2)

De (1) et (2), on déduit que Yz € R, Fy(x) = 0.

En passant a la limite, on a : lianoo Fz(x) =0.
xr—
Ce qui contredit de nouveau le fait que lirgl Fz(x)=1.
Tr—+00

Remarque
Je n’ai pas traité le cas ot X n’est ni a densité, ni discrete. Cela sort du
cadre du programme.
Cette question est trop difficile, I’énoncé aurait du préciser : « Justifier
que la suite (M,,),»1 ne converge en loi vers aucune variable aléatoire
a densité ».
4)a)Soit « > 0. Prenons n suffisamment grand, de sorte que xy/n = 1.

M
G,(x) = P(—n < :r)

NG

= P (M, < xv/n)
=k (x\/ﬁ)

= (1 - m)n car YVt 2 1, F,(t) = (1 - tlz)n

(=)
- eop{um(1- 1))

Comme In(1 +z) ~z et lim — =0, on déduit :
0 n—=+00 nr

In(1 L L is:nln(1 ! !
n el ok mCQ,puls.nn ) Bodia s

1 1
On a donc lim nln(l - —) = ——, puis lim G,(z)=e
xX n—+0o

n—+0oo nxQ

4

b)Soit « € R. Distinguons deux cas :

ez >0
On a montré en 4)a) que liI_P Gn(z) = Fyy(z).
n—+00

ez =<0
G,(x) = F, (zy/n) = 0 car F,, est nulle sur ] — 00,0][.
<0
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Donc lim G,(z) =0 = Fy(z).
n—+00
On a établi que Yz € R, hr—Poo G,(x) = Fyy(x), ce qui prouve que la suite
n—
M, :
— converge en loi vers W.
nx1

Vn
Partie C :

5)a)SELECT montant FROM sinistres WHERE annee=2024;
b)SELECT mois,annee FROM sinistres WHERE montant>1000000;
6)INSERT INTO sinistres VALUES (7652,2025,"avril",1540);

Partie D :
DX
N ()\)donCN(Q)—NetVneN P(N=n)=e X T
8)T'(Q2) =
9)Soit n € N*.

a)Supposons I’événement (N = n) réalisé. Le nombre de sinistres de ’année
vaut donc n.

L’expérience aléatoire est alors constituée de n épreuves (épreuve=sinistre)
successives et indépendantes (du fait que Vi,...,V,, sont indépendantes).

A chaque épreuve, la probabilité de succes (succes si le montant du sinistre
est > A) vaut :

P(V>A)=1—P(V5A)=1—FV(A)=%.

Enfin, T' compte le nombre de succes.

1
Donc la loi conditionnelle de T sachant (N = n) est la loi & (n, P)

b)Soit k € N.

Calculons P n=p)(T = k) en distinguant deux cas :

sk<n

Grace a la question précédente, on a : P(n=p)(T = k) = ( " )(L)k (1 - i)n k.
ek>n

Le nombre de sinistres dont le montant est > A ne peut pas dépasser le
nombre total de sinistres.

Donc Pn=p)(T' = k) =0

10)Soit k£ € N. La formule des probabilités totales pour le systeme complet
(N = n),en donne :
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P(T =k) =) Py=n)(T = k)P(N = n)

n=0
k-1 +00

=Y P=n)(T = k)P(N =n)+ Y Piy=p)(T = k)P(N =n)
n=0 n=k

Dans la premiere somme, n < k donc P(Nzn)(T = k) = 0. On poursuit :
+00 k n—-k n
: : n 1 1 2 A
P(T—k)—;(k)(P) (1_P) e xd
& ol ( 1\ 1 )”"“ N
=Y ——— =] [1-=5] *x=
Z (n = k)E! A A? n!
- k +00 n n—k
k! 2 = (n—k)! A?

-2 k +00 \j+k j
1 A 1
=e]€—!x(ﬁ) Z - (1——) en posant j =n—k

| 2
o A A
J
ok (R (-)
R P q
j=0 I
-A k
1 L
= ek_! x A x (E) X e/\(1 AQ) grace a la série exponentielle
Nk
,\/AQ()‘/A )

Donc T — & ()\/A2>.

11)Cela correspond a I'espérance de T, c’est-a-dire A/ A%
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