
Correction DS3

Exercice (eml 2021 - sans la partie C)

Partie A

1)φ est continue sur ]−∞, 1[ comme somme, produit et composée de fonc-
tions continues.

De plus, lim
x→1−

(1− x) ln(1− x) = lim
t→0+

t ln t = 0 par croissances comparées.

lim
x→1−

x = 1. Par somme, lim
x→1−

φ(x) = 1 = φ(1).

Donc φ est continue à gauche en 1.

On conclut que φ est continue sur ]−∞, 1].

2)a)φ est de classe C1 sur ]−∞, 1[ comme somme, produit et composée de
fonctions de classe C1.

Pour tout x < 1, on a :

φ′(x) = 1 + (−1)× ln(1− x) + (1− x)×
(

−1

1− x

)
= − ln(1− x).

b)φ′(x) ≥ 0 ⇐⇒ ln(1− x) ≤ 0 ⇐⇒ 1− x ≤ 1 ⇐⇒ x ≥ 0.

Donc φ est décroissante sur ]−∞, 0] et croissante sur [0, 1[.

Remarque
φ étant continue en 1 et croissante sur [0, 1[, elle est également croissante
sur [0, 1].

c)Pour tout x < 1, on a :

φ(x)− φ(1)

x− 1
=
x+ (1− x) ln(1− x)− 1

x− 1
=
x− 1− (x− 1) ln(1− x)

x− 1

=
(x− 1)

(
1− ln(1− x)

)
x− 1

= 1− ln(1− x).

lim
x→1−

ln(1− x) = −∞ donc lim
x→1−

φ(x)− φ(1)

x− 1
= +∞.

Donc φ n’est pas dérivable (à gauche) en 1.

Remarque
Cφ admet donc une tangente verticale d’équation x = 1.

3)Quand x→ −∞, on a une forme indéterminée du type (−∞) + (+∞).

Posons t = 1− x ou x = 1− t. Quand x→ −∞, t→ +∞.

Puis, lim
x→−∞

φ(x) = lim
t→+∞

(1− t+ t ln t) = lim
t→+∞

(
1 + t(ln t− 1)

)
.

Or, lim
t→+∞

t = +∞ et lim
t→+∞

(ln t− 1) = +∞.

Par produit, lim
t→+∞

t(ln t− 1) = +∞. D’où lim
x→−∞

φ(x) = +∞.
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4)Courbe.
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5)a)L’intégrale

∫ 1

0
t ln tdt est impropre en 0.

Soit x ∈]0, 1]. Faisons une IPP sur

∫ 1

x
t ln tdt en posant :

u′(t) = t v(t) = ln t

u(t) =
t2

2
v′(t) =

1

t

u et v sont de classe C1 sur [x, 1]. L’IPP est valide et donne :∫ 1

x
t ln tdt =

[
t2

2
ln t

]1
x

−
∫ 1

x

t2

2
× 1

t
dt

= 0− x2

2
lnx−

∫ 1

x

t

2
dt

= −x
2

2
lnx−

[
t2

4

]1
x

= −x
2

2
lnx−

(
1

4
− x2

4

)
= −x

2

2
lnx− 1

4
+
x2

4
.

lim
x→0+

x2 lnx = 0 par croissances comparées et lim
x→0+

x2

4
= 0.

Par somme, lim
x→0+

∫ 1

x
t ln tdt = −1

4
.

Donc

∫ 1

0
t ln tdt converge et vaut −1

4
.
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b)L’intégrale

∫ 1

0
φ(x)dx est impropre en 1.

Soit A ∈ [0, 1[. On effectue un changement de variable dans

∫ A

0
φ(x)dx en

posant : t = 1− x.

• t = 1− x⇐⇒ x = 1− t︸ ︷︷ ︸
ψ(t)

.

• bornes :
x = 0 ⇐⇒ t = 1
x = A⇐⇒ t = 1−A

• fonction :
φ(x) = 1− t+ t ln t.

• élément différentiel :
dx = ψ′(t)dt = −1dt.

ψ est affine donc de classe C1 sur [1−A, 1]. La formule de changement de
variable est licite et donne :∫ A

0
φ(x)dx =

∫ 1−A

1
(1− t+ t ln t)× (−1)dt

=

∫ 1

1−A
(1− t+ t ln t) dt

=

∫ 1

1−A
(1− t)dt+

∫ 1

1−A
t ln tdt

=

[
t− t2

2

]1
1−A

(1− t)dt+

∫ 1

1−A
t ln tdt

=

(
1− 1

2

)
−
(
(1−A)− (1−A)2

2

)
+

∫ 1

1−A
t ln tdt

= −1

2
+A− (1−A)2

2
+

∫ 1

1−A
t ln tdt.

Or, lim
A→1−

(
−1

2
+A− (1−A)2

2
+

∫ 1

1−A
t ln tdt

)
=

1

2
+

∫ 1

0
t ln tdt

=
1

2
− 1

4
=

1

4
.

Donc lim
A→1−

∫ A

0
φ(x)dx =

1

4
.

On conclut que

∫ 1

0
φ(x)dx converge et vaut

1

4
.
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Partie B

6)a)Comme x ∈ [0, 1[ et que t ∈ [0, x], on a bien t ̸= 1.
La formule sur la somme des termes consécutifs d’une suite géométrique
donne alors :

n−1∑
k=0

tk =
1− tn

1− t
.

D’où,
1

1− t
−
n−1∑
k=0

tk =
1

1− t
− 1− tn

1− t
=

tn

1− t
.

b)En intégrant l’égalité ci-dessus entre les bornes croissantes 0 et x, on a :∫ x

0

(
1

1− t
−
n−1∑
k=0

tk

)
dt =

∫ x

0

tn

1− t
dt.

Puis, par linéarité :∫ x

0

1

1− t
dt−

∫ x

0

(
n−1∑
k=0

tk

)
dt =

∫ x

0

tn

1− t
dt (∗).

Calculons maintenant les deux premières intégrales.∫ x

0

1

1− t
dt =

[
− ln(1− t)

]x
0
= − ln(1− x).∫ x

0

(
n−1∑
k=0

tk

)
dt =

n−1∑
k=0

∫ x

0
tkdt par linéarité

=
n−1∑
k=0

[
tk+1

k + 1

]x
0

=
n−1∑
k=0

xk+1

k + 1

=
n∑
k=1

xk

k
en posant j = k + 1, puis en renommant j en k.

En remplaçant dans (∗), on conclut :

− ln(1− x)−
n∑
k=1

xk

k
=

∫ x

0

tn

1− t
dt.

7)• Soit n ∈ N∗.
Pour t ∈ [0, x], on a : t ≤ x, puis −t ≥ −x et 1− t ≥ 1− x > 0.

Par passage à l’inverse, on déduit : ∀t ∈ [0, x], 0 <
1

1− t
≤ 1

1− x
.
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En multipliant par tn ≥ 0, on a ∀t ∈ [0, x], 0 <
tn

1− t
≤ tn

1− x
.

En intégrant entre les bornes croissantes 0 et x, on a :

0 ≤
∫ x

0

tn

1− t
dt ≤

∫ x

0

tn

1− x
dt

avec

∫ x

0

tn

1− x
dt =

1

1− x

∫ x

0
tndt =

1

1− x

[
tn+1

n+ 1

]x
0

=
xn+1

(n+ 1)(1− x)
.

Donc 0 ≤
∫ x

0

tn

1− t
dt ≤ xn+1

(n+ 1)(1− x)
(∗).

Enfin, comme 0 ≤ x < 1, on a : xn+1 ≤ 1.

En multipliant par
1

(n+ 1)(1− x)
> 0, on déduit :

xn+1

(n+ 1)(1− x)
≤ 1

(n+ 1)(1− x)
.

En recollant avec (∗), on déduit :

∀n ∈ N∗, 0 ≤
∫ x

0

tn

1− t
dt ≤ 1

(n+ 1)(1− x)
.

• Comme x ∈ [0, 1[ est fixé, on a : lim
n→+∞

(n + 1)(1 − x) = +∞, puis :

lim
n→+∞

1

(n+ 1)(1− x)
= 0.

D’après la propriété des gendarmes, lim
n→+∞

∫ x

0

tn

1− t
dt = 0.

8)L’égalité 6)b) peut se réécrire sous la forme :
n∑
k=1

xk

k
= − ln(1− x)−

∫ x

0

tn

1− t
dt.

On a vu que lim
n→+∞

∫ x

0

tn

1− t
dt = 0 donc lim

n→+∞

n∑
k=1

xk

k
= − ln(1− x).

Cela signifie que la série
∑
n≥1

xn

n
converge et que

+∞∑
n=1

xn

n
= − ln(1− x).

Remarque

On a : ∀n ∈ N∗,
xn

n
≤ xn. De plus, la série géométrique

∑
n≥0

xn converge

puisque son paramètre x ∈ [0, 1[.

Le critère de comparaison assure alors la convergence de la série
∑
n≥1

xn

n
,

mais ne permet pas de calculer sa somme !

9)a)∀n ∈ N∗,
1

n(n+ 1)
=

(n+ 1)− n

n(n+ 1)
=

n+ 1

n(n+ 1)
− n

n(n+ 1)
=

1

n
− 1

n+ 1
.
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b)Pour tout n ∈ N∗, on a :
n∑
k=1

xk+1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
xk+1

=
n∑
k=1

(
xk+1

k
− xk+1

k + 1

)

=
n∑
k=1

xk+1

k
−

n∑
k=1

xk+1

k + 1

= x

n∑
k=1

xk

k
−
n+1∑
j=2

xj

j

= x
n∑
k=1

xk

k
−

n+1∑
j=1

xj

j
− x1

1


= x

n∑
k=1

xk

k
−

 n∑
j=1

xj

j
+
xn+1

n+ 1
− x


= (x− 1)

n∑
k=1

xk

k
− xn+1

n+ 1
+ x en renommant j en k.

lim
n→+∞

n∑
k=1

xk

k
=

+∞∑
k=1

xk

k
= − ln(1− x) d’après la question 8).

lim
n→+∞

xn+1 = 0 car 0 ≤ x < 1. De plus, lim
n→+∞

(n+ 1) = +∞.

Par quotient, lim
n→+∞

xn+1

n+ 1
= 0.

On déduit : lim
n→+∞

n∑
k=1

xk+1

k(k + 1)
= −(x− 1) ln(1− x) + x = φ(x).

Cela signifie que la série
∑
n≥1

xn+1

n(n+ 1)
converge et que

+∞∑
n=1

xn+1

n(n+ 1)
= φ(x).

10)La question précédente ne peut pas être appliquée pour x = 1 car dans
tous les calculs, on a supposé que x < 1.

En revanche, d’après la question 9)a), la série
∑
n≥1

1

n(n+ 1)
peut se réécrire

sous la forme
∑
n≥1

(
1

n
− 1

n+ 1

)
. C’est une série télescopique.

Elle converge car lim
n→+∞

1

n
= 0.
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Sa somme vaut :
+∞∑
n=1

(
1

n
− 1

n+ 1

)
= lim

n→+∞

+∞∑
k=1

(
1

k
− 1

k + 1

)
= lim

n→+∞

(
1

1
− 1

n+ 1

)
par télescopage

= lim
n→+∞

(
1− 1

n+ 1

)
= 1

= φ(1).
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Exercice 2 (edhec 2020)

1)An(R) est une partie non vide de Mn(R) car 0 ∈ An(R) du fait que
t0 = 0 = −0.

Pour toutes matrices U et V de An(R) et tout réel λ, on a :

t(λU + V ) = λtU +t V par linéarité de la transposition

= λ(−U) + (−V ) car U ∈ An(R) et V ∈ An(R)

= −(λU + V ).

Donc λU + V ∈ An(R).

On conclut que An(R) est un sous-espace vectoriel de Mn(R).

2)a)Soit M ∈ An(R).

tf(M) = t
[
(tA)M +MA

]
= t((tA)M) + t(MA)

= tM t(tA) + tAtM car t(BC) =t CtB

= tMA+ tAtM car t(tA) = A

= (−M)A+ tA(−M) car M ∈ An(R)

= −
[
MA+ tAM

]
= −f(M).

Donc f(M) ∈ An(R).

2)b)Pour toutes matrices U et V de An(R) et tout réel λ, on a :

f(λU + V ) = (tA)(λU + V ) + (λU + V )A

= λ(tA)U + (tA)V + λUA+ V A

= λ
[
(tA)U + UA

]
+ (tA)V + V A

= λf(U) + f(V ).

Donc f est linéaire. Par ailleurs, elle est ≪ endo ≫ grâce à la question 2)a).
Ainsi, f est un endomorphisme de An(R).

3)a)Soit M =

 a b c
d e f
g h i

 une matrice de M3(R).

M ∈ A3(R)

⇐⇒ tM = −M

⇐⇒

 a d g
b e h
c f i

 =

 −a −b −c
−d −e −f
−g −h −i


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⇐⇒



a = −a
d = −b
g = −c
b = −d
e = −e
h = −f
c = −g
f = −h
i = −i

⇐⇒



a = 0
e = 0
i = 0
g = −c
d = −b
h = −f

On déduit :

A3(R) =


 0 b c

−b 0 f
−c −f 0

 , (b, c, f) ∈ R3


=

b
 0 1 0

−1 0 0
0 0 0

+ c

 0 0 1
−0 0 0
−1 0 0

+ f

 0 0 0
0 0 1
0 −1 0

 , (b, c, f) ∈ R3


= Vect (J,K,L).

.

Donc la famille B = (J,K,L) est une famille génératrice de A3(R).

3)b)Pour tous réels a, b et c, on a :

aJ + bK + cL = 0

⇐⇒ a

 0 1 0
−1 0 0
0 0 0

+b

 0 0 1
0 0 0
−1 0 0

+c

 0 0 0
0 0 1
0 −1 0

 =

 0 0 0
0 0 0
0 0 0


⇐⇒

 0 a b
−a 0 c
−b −c 0

 =

 0 0 0
0 0 0
0 0 0


⇐⇒ a = b = c = 0.

Donc la famille B = (J,K,L) est libre.

B est une famille libre et génératrice de A3(R), c’est donc une base de
A3(R). Ainsi, dim

(
A3(R)

)
= 3.
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4)a)f(J) = (tA)J + JA

=

 0 0 0
0 −1 0
1 0 0

 0 1 0
−1 0 0
0 0 0

+

 0 1 0
−1 0 0
0 0 0

 0 0 1
0 −1 0
0 0 0


=

 0 0 0
1 0 0
0 1 0

+

 0 −1 0
0 0 −1
0 0 0


=

 0 −1 0
1 0 −1
0 1 0


= −J − L.

f(K) = (tA)K +KA

=

 0 0 0
0 −1 0
1 0 0

 0 0 1
0 0 0
−1 0 0

+

 0 0 1
0 0 0
−1 0 0

 0 0 1
0 −1 0
0 0 0


=

 0 0 0
0 0 0
0 0 1

+

 0 0 0
0 0 0
0 0 −1


= 0.

f(L) = (tA)L+ LA

=

 0 0 0
0 −1 0
1 0 0

 0 0 0
0 0 1
0 −1 0

+

 0 0 0
0 0 1
0 −1 0

 0 0 1
0 −1 0
0 0 0


=

 0 0 0
0 0 −1
0 0 0

+

 0 0 0
0 0 0
0 1 0


=

 0 0 0
0 0 −1
0 1 0


= −L.

4)b)Imf = Vect
(
f(J), f(K), f(L)

)
car (J,K,L) est une base de A3(R)

= Vect
(
−J − L, 0,−L

)
= Vect

(
−J − L,−L

)
= Vect

(
J + L,L

)
= Vect

(
J, L

)
car J = (J + L)− L

(J, L) est donc une famille génératrice de Imf . C’est aussi une famille libre
car J et L ne sont pas proportionnelles. Donc (J, L) est une base de Imf .
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4)c)On déduit que dim
(
Imf

)
= 2.

Le théorème du rang donne alors :

dim
(
Kerf) = dim

(
A3(R)

)
− dim

(
Imf

)
= 3− 2 = 1.

Or, f(K) = 0 donc K ∈ Kerf .
(K) est une famille libre de Kerf car constituée d’un seul vecteur non nul.
Son cardinal vaut 1 et cöıncide avec la dimension de Kerf .
C’est donc une base de Kerf .

5)a)On a vu dans la question 4)a) que :

f(J) = −1J + 0K − 1L, f(K) = 0J + 0K + 0L et f(L) = 0J + 0K − 1L.

Donc F = MB(f) =

 −1 0 0
0 0 0
−1 0 −1

.

5)b)F est triangulaire donc ses valeurs propres sont ses éléments diagonaux,
c’est-à-dire 0 et −1.

5)c)• rg(F ) = rg(f) = dimImf = 2.

Par ailleurs, F + I =

 0 0 0
0 1 0
−1 0 0

.

Donc rg(F + I) = dimV ect

 0
0
−1

 ,

 0
1
0

 ,

 0
0
0


= dimV ect

 0
0
−1

 ,

 0
1
0


= 2 car la famille est libre

• Le cours donne pour tout λ ∈ R :

dimEλ(F ) + rg(F − λI) = 3 (∗)

On déduit :

dimE0(F ) = 3− rg(F ) = 1 et dimE−1(F ) = 3− rg(F + I) = 1.

La somme des dimensions des sous-espaces propres de F vaut 2.
Or, F ∈ M3(R). Donc F n’est pas diagonalisable, d’après le théorème de
réduction.

Remarque
On pouvait aussi calculer E0(F ) et E−1(F ), mais l’égalité (∗) permet d’aller
plus vite.

Nicolas DAMIEN - correction DS3 - page 11/ 17



Exercice 3 (eml 2025)

Partie A :

1)a)Récurrence.
Soit P(n) la proposition : ≪ un > 0 ≫.

P(0) est vraie car u0 = 1 > 0.

Soit n ∈ N. Supposons P(n) vraie. Montrons que P(n+ 1) est vraie.
Par HR, un > 0. De plus, e1/un > 0. Par produit, un+1 > 0.

On conclut que P(n) est vraie pour tout n ∈ N.

b)∀n ∈ N, un+1 − un = un
(
e1/un − 1

)
.

un > 0 donc 1/un > 0 et e1/un > 1. D’où e1/un − 1 > 0.

Par produit, un+1 − un > 0. Donc la suite (un)n∈N est strictement crois-
sante.

c)(un)n∈N étant croissante, elle admet une limite. Cette limite est soit un
nombre réel L, soit +∞.
Supposons que lim

n→+∞
un = L.

Comme (un)n∈N est croissante, on a : ∀n ∈ N, un ≥ u0, soit un ≥ 1.

Par passage à la limite, on a alors : L ≥ 1 (∗)
De plus, (un)n∈N est du type un+1 = f(un) avec f : x 7→ xe1/x.
f est continue sur R∗ donc en L.
D’après le théorème du point fixe, L est un point fixe de f . Elle est donc
solution de l’équation f(x) = x.

Or, f(x) = x⇐⇒ xe1/x = x

⇐⇒ x
(
e1/x − 1

)
= 0

⇐⇒ x = 0 ou e1/x − 1 = 0

⇐⇒ x = 0 ou
1

x
= 0︸ ︷︷ ︸

impossible

.

0 est donc le seul point fixe de f . Donc L = 0, ce qui contredit (∗).
On conclut que lim

n→+∞
un = +∞.

2)programme

import numpy as np

u=1

n=0

while u<10**6:

u=u*np.exp(1/u)

n=n+1

print(n)
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Partie B :

3)• lim
x→+∞

1

x
= 0 et lim

t→0
et = 1. Par composition, lim

x→+∞
e1/x = 1.

lim
x→+∞

x = +∞. Par produit, lim
x→+∞

f(x) = +∞.

• lim
x→0+

1

x
= +∞ et lim

t→+∞
et = +∞. Par composition, lim

x→0+
e1/x = +∞.

lim
x→0+

x = 0. Donc lim
x→0+

f(x) est une FI du type 0×+∞.

Posons X =
1

x
. Quand x→ 0+, X → +∞.

Donc lim
x→0+

f(x) = lim
X→+∞

1

X
eX = lim

X→+∞

eX

X
= +∞ par croiss. comparées.

4)f est dérivable sur ]0,+∞[ par produit et composées de fonctions dérivables.

∀x > 0, f ′(x) = 1× e1/x + x×
(
− 1

x2
e1/x

)
= e1/x − 1

x
e1/x

=

(
1− 1

x

)
e1/x

=
x− 1

x
e1/x.

x > 0 et e1/x > 0 donc f ′(x) est du signe de x− 1.

t

f ′(x)

f(x)

0 1 +∞

− 0 +

+∞+∞

ee

+∞+∞

5)a)La série
∑
k≥0

x−k

k!
peut se réécrire sous la forme :

∑
k≥0

(1/x)k

k!
.

Il s’agit de la série exponentielle de paramètre 1/x.

Elle converge et sa somme vaut :

+∞∑
k=0

x−k

k!
= e1/x.

b)f(x) = xe1/x = x

+∞∑
k=0

x−k

k!
= x

(
x0

0!
+
x−1

1!
+

+∞∑
k=2

x−k

k!

)
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= x

(
1 +

1

x
+

+∞∑
k=2

x−k

k!

)
= x+ 1 + x

+∞∑
k=2

x−k

k!
= x+ 1 +

1

x
× x2

+∞∑
k=2

x−k

k!
.

Enfin, en rentrant x2 dans la somme :

f(x) = x+ 1 +
+∞∑
k=2

x2−k

k!
.

6)a)Soit x ≥ 1.

a)•
+∞∑
k=2

x2−k

k!
est une somme dont tous les termes sont positifs.

Donc

+∞∑
k=2

x2−k

k!
≥ x2−2

2!
, c’est-à-dire

+∞∑
k=2

x2−k

k!
≥ 1

2
.

• x ≥ 1 donc 0 <
1

x
≤ 1.

Pour k ≥ 2, la fonction t 7→ tk−2 est croissante sur R+ donc

(
1

x

)k−2

≤ 1,

c’est-à-dire x2−k ≤ 1.

On a donc ∀k ≥ 2,
x2−k

k!
≤ 1

k!
(1)

La série
∑
k≥2

1

k!
=
∑
k≥2

1k

k!
converge car c’est une série exponentielle (tronquée)

de paramètre 1.

En sommant les inégalités (1) pour k allant de 2 à +∞, on a :

+∞∑
k=2

x2−k

k!
≤

+∞∑
k=2

1

k!
.

Or,

+∞∑
k=2

1

k!
≤

+∞∑
k=0

1

k!
= e1 = e. Donc

+∞∑
k=2

x2−k

k!
≤ e.

Finalement, on a :
1

2
≤

+∞∑
k=2

x2−k

k!
≤ e.

b)En divisant membre à membre les inégalités ci-dessus par x, on a :

1

2x
≤ 1

x

+∞∑
k=2

x2−k

k!
≤ e

x
, puis en utilisant 5)b) :

1

2x
≤ f(x)− (x+ 1) ≤ e

x
(∗)
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7) lim
x→+∞

1

2x
= 0 et lim

x→+∞

e

x
= 0.

D’après la propriété des gendarmes, lim
x→+∞

(
f(x)− (x+ 1)

)
= 0.

Cela signifie que f(x)− (x+1) =
+∞

o(1), c’est-à-dire : f(x) =
+∞

x+1+ o(1).

8)La droite d’équation y = x+ 1 est asymptote oblique à Cf en +∞.
Les variations de f sont données par la question 4).

−2 −1 0 1 2 3 4

−1

1

2

3

4

5

6

Cf

Partie C :

9)a)Pour tout k ∈ N, on a :

ln (uk+1)− ln (uk) = ln
(
uke

1/uk
)
− ln (uk)

= ln (uk) + ln
(
e1/uk

)
− ln (uk)

=
1

uk
.

b)Soit n ∈ N∗.

En sommant les égalités précédentes pour k allant de 0 à n− 1, on a :

n−1∑
k=0

(
ln (uk+1)− ln (uk)

)
=

n−1∑
k=0

1

uk
.

Par télescopage, on a :
n−1∑
k=0

(
ln (uk+1)− ln (uk)

)
= ln (un)− ln (u0) = ln (un) car u0 = 1.
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On conclut que ∀n ∈ N∗, ln (un) =

n−1∑
k=0

1

uk
.

10)a)La suite (un)n∈N est croissante et u0 = 1 donc ∀k ∈ N, uk ≥ 1.

Il est alors valide d’utiliser (∗) avec x→ uk, ce qui donne :

∀k ∈ N,
1

2uk
≤ f (uk)−

(
uk + 1

)
≤ e

uk
.

Et comme f (uk) = uk+1, on déduit immédiatement :

∀k ∈ N, 1 +
1

2uk
≤ uk+1 − uk ≤ 1 +

e

uk
.

b)Soit n ∈ N∗.

• En sommant les égalités ci-dessus pour k allant de 0 à n− 1, on a :
n−1∑
k=0

(
1 +

1

2uk

)
≤

n−1∑
k=0

(uk+1 − uk) ≤
n−1∑
k=0

(
1 +

e

uk

)
.

Calculons chacune des sommes.
n−1∑
k=0

(
1 +

1

2uk

)
=

n−1∑
k=0

1 +
n−1∑
k=0

1

2uk
= n+

1

2

n−1∑
k=0

1

uk
,

Par télescopage,
n−1∑
k=0

(uk+1 − uk) = un − u0 = un − 1,

n−1∑
k=0

(
1 +

e

uk

)
=

n−1∑
k=0

1 +

n−1∑
k=0

e

uk
= n+ e

n−1∑
k=0

1

uk
.

En remplaçant, on conclut :

n+
1

2

n−1∑
k=0

1

uk
≤ un − 1 ≤ n+ e

n−1∑
k=0

1

uk
.

• En ajoutant membre à membre par 1− n, on a :

1 +
1

2

n−1∑
k=0

1

uk
≤ un − n ≤ 1 + e

n−1∑
k=0

1

uk
.

Enfin, en appliquant 9)b) :

1 +
1

2
ln (un) ≤ un − n ≤ 1 + e ln (un) .

11)a)On sait d’après la question 1)c) que lim
n→+∞

un = +∞.

Par croissances comparées, on a par ailleurs : lim
x→+∞

lnx

x
= 0.
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On déduit que lim
n→+∞

ln (un)

un
= 0.

b)En divisant membre à membre la deuxième inégalité 10)b) par un, on a :

1

un
+

1

2
× ln (un)

un
≤ 1− n

un
≤ 1

un
+ e× ln (un)

un
.

On sait que lim
n→+∞

ln (un)

un
= 0.

De plus, lim
n→+∞

un = +∞ donc lim
n→+∞

1

un
= 0.

Donc lim
n→+∞

(
1

un
+

1

2
× ln (un)

un

)
= 0 et lim

n→+∞

(
1

un
+ e× ln (un)

un

)
= 0.

D’après la propriété des gendarmes, lim
n→+∞

(
1− n

un

)
= 0.

On a donc lim
n→+∞

n

un
= 1, ce qui signifie que un ∼

+∞
n.

12)
n−1∑
k=0

1

uk
= ln (un) d’après 9)b)

= ln
(un
n

× n
)

= ln
(un
n

)
+ ln(n)

Or, un ∼
+∞

n. Donc lim
n→+∞

un
n

= 1, puis lim
n→+∞

ln
(un
n

)
= 0.

On a donc
n−1∑
k=0

1

uk
=
+∞

o(1) + ln(n), ce qui entrâıne que :

n−1∑
k=0

1

uk
∼
+∞

ln(n).

Remarque
A partir de l’équivalent un ∼

+∞
n, il aurait été prématuré de conclure que

ln (un) ∼
+∞

ln(n).

En effet, on n’a pas le droit d’appliquer une fonction de part et d’autre
d’un équivalent.
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